Modelling the Size Effects on the Mechanical Properties of Micro/Nano Structures

نویسندگان

  • Amir Musa Abazari
  • Seyed Mohsen Safavi
  • Ghader Rezazadeh
  • Luis Guillermo Villanueva
چکیده

Experiments on micro- and nano-mechanical systems (M/NEMS) have shown that their behavior under bending loads departs in many cases from the classical predictions using Euler-Bernoulli theory and Hooke's law. This anomalous response has usually been seen as a dependence of the material properties on the size of the structure, in particular thickness. A theoretical model that allows for quantitative understanding and prediction of this size effect is important for the design of M/NEMS. In this paper, we summarize and analyze the five theories that can be found in the literature: Grain Boundary Theory (GBT), Surface Stress Theory (SST), Residual Stress Theory (RST), Couple Stress Theory (CST) and Surface Elasticity Theory (SET). By comparing these theories with experimental data we propose a simplified model combination of CST and SET that properly fits all considered cases, therefore delivering a simple (two parameters) model that can be used to predict the mechanical properties at the nanoscale.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strain gradient torsional vibration analysis of micro/nano rods

Fabrication, characterization and application of micro-/nano-rods/wires are among the hottest topics in materials science and applied physics. Micro-/nano-rod-based structures and devices are developed for a wide-ranging use in various fields of micro-/nanoscience (e.g. biology, electronics, medicine, optics, optoelectronics, photonics and sensors). It is well known that the structure and prope...

متن کامل

Strain gradient torsional vibration analysis of micro/nano rods

Fabrication, characterization and application of micro-/nano-rods/wires are among the hottest topics in materials science and applied physics. Micro-/nano-rod-based structures and devices are developed for a wide-ranging use in various fields of micro-/nanoscience (e.g. biology, electronics, medicine, optics, optoelectronics, photonics and sensors). It is well known that the structure and prope...

متن کامل

Effect of Seawater on Micro-Nano Air Bubbles Concrete for Repair of Coastal Structures

This paper investigated the effects of seawater curing of concrete made by Micro-Nano Air Bubbles (MNAB) on compressive, flexural and tensile strengths of the concrete. This product will be applicable for rehabilitation or repair of coastal RC structures. In this research, the effect of different combinations of concrete ingredients including 0-100, 25-75, 50-50, 75-25, and 100-0 percent ...

متن کامل

Effect of milling time and microwave sintering on microhardness and electrical properties of nano and micro structured cordierite

The purpose of this research is to investigate the mechanical and electrical properties of nano structured cordierite. Nano grain size powders were synthesized through mechanical activation by high-energy ball milling of the starting powders containing 34.86 wt% Al2O3, 51.36 wt% SiO2, and 13.78 wt% MgO. Samples were prepared by conventional and microwave sintering at 1390°C. SEM observations il...

متن کامل

Study of Laminated Composite MEMS and NEMS Performance in Nano Metric Operations

Precision of nano-metric operations is an important issue in nano-engineering studies. Several operative parameters might affect the quality of results. The parameters of the nano world are significant but not entirely controllable. However, the geometrical and mechanical properties of micro cantilevers are completely controllable. So, controlling the sensitivity of resulting image through t la...

متن کامل

The Structural and Mechanical Properties of Al-2.5%wt. B4C Met-al Matrix Nano-composite Fabricated by the Mechanical Alloying

In this study, aluminum (Al) matrix reinforced with micro-particles (30 µm) and nano-particles (50 nm) boron carbide (B4C) were used to prepare Al-2.5%wt., B4C nano-composite and micro-composite, respectively, using mechanical alloying method. The mixed powders were mechanically milled at 5, 10, 15 and 20 hrs. The XRD results indicated that the crystallite sizes of both the micro-composite and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015